Compiling Support Vector Machines for Efficient Classification

Dennis DeCoste

DECOSTE@AIG.JPL.NASA.GOV

Jet Propulsion Laboratory / California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

Abstract

The time cost of classifying examples with
support vector machines is traditionally lin-
ear in the number (L) of support vectors,
since each example computes dot products
with each SV. This presents a critical chal-
lenge for applying SVMs to large-scale prob-
lems, since L is often large (e.g. 5% or
more of the training data). This paper in-
troduces techniques for “compiling” a SVM
classifier, such that the cost of computing
an output becomes proportional to the dif-
ficulty of classifying the given example. An
example far from the decision surface re-
quires few dot products whereas a close ex-
ample may require L dot products. Our
compiled SVMs achieve order-of-magnitudes
amortized speedups while still guaranting the
same classifications as the original SVM. The
related “reduced set” method (Burges, 1996)
similarly lowers the effective L, but pro-
vides neither proportionality with difficulty
nor guaranteed preservation of classifications.

1. Introduction

Much recent work has shown support vector machines
(SVMs) consistently achieving among the lowest test
error rates across a wide variety of practical applica-
tions (e.g. (DeCoste & Scholkopf, 2001; Guyon, 2000;
Schoelkopf et al., 1999)). Also, recent decomposition
methods for SVM training such as SM O (Platt, 1999;
Keerthi et al., 1999) and SV M'9" (Joachims, 1999),
have demonstrated significant gains in scaling SVMs to
handle large real-world classification tasks. The time
costs of those methods appear to typically scale O(£?),
where £ is the number of training examples — whereas
direct application of general quadratic programming
optimizers often scales O(£3).

Despite all this progress, wide-spread use of SVMs in
practical large-scale applications has been hindered by
three key obstacles:

1. test-time is typically O(£) — classifying each test
example requires L SVM kernel evaluations (e.g.
dot products), one with each of the L support
vectors, and L is typically a large fraction of £
(e.g. 5% or more),

0N

. training-time scales super-linear (i.e. O(£2)),

3. efficient model selection (e.g. optimal kernel and
regularization parameters) is still an open issue.

The first obstacle is often most critical for many real-
world applications, including CPU and memory lim-
ited onboard spacecraft applications that have moti-
vated our work. For example, a SVM has recently
achieved the best generalization performance (De-
Coste & Schélkopf, 2001) on the well-known bench-
mark MNIST digit recognition task (LeCun, 2000),
but its test-time complexity is orders of magnitude
higher than the previous best (a convolution neural
network) due to the large numbers of SVs for each
binary digit recognizer (around 20,000) and high di-
mensionality (784 pixels per image).

This paper focuses on overcoming that first obstacle.
We also believe that embedding our solution into the
training and model selection processes would also sig-
nificantly help address those remaining two obstacles.

We exploit geometric properties of the SVM to reduce
the average number of kernel evaluations required to
classify a test example — by as much as a factor of L
under favorable conditions. We demonstrate the effec-
tiveness of our approach on illustrative data.

2. Support Vector Machines

This section summarizes the relevant SVM background
and then gives a reformulation in terms of kernel dis-
tances that we will employ. Given an £-by-D data
matrix (X), an £-by-1 labels vector (y), a kernel func-
tion (K), and a regularization scalar parameter (C),
training a binary SVM classifier traditionally consists
of the following Quadratic Programming (QP) dual
formulation:

minimize:
£ £
% Ei’jzl oYy K (i, x5) — D iy O
subject to:
4
0<a; < C: Zi:l QY = 07

where £ is the number of training examples, y; is the
label (+1 for positive example, -1 for negative) for the
i-th training example (z;), and K (z;,z;) denotes the
value of the kernel function for i-th and j-th examples.

The kernel K (z;,z;) implicitly projects the two given
examples from D-dimensional input space into some
(possibly infinite) feature space and returns their dot
product in that feature space. That is, it computes

K(zi,z;) = ¢(zi) - 6(;), (1)

for some mapping function ¢, but without explicitly
computing the coordinates of the projected vectors. In
this way, kernels allow large non-linear feature spaces
to be explored while avoiding curse of dimensionality.

The simplest is the linear kernel, implemented as a
simple dot product:

d

K(u,v):u-vEZui-vi. (2)

i=1

The polynomial kernel is defined by a non-linearly
squashed dot product of the following form:

K(U’:U) = (u"u+lr)d7 (3)
with polynomial degree parameter d. Varying the con-
tinuous offset parameter r changes the relative weight-
ing of the (implicit) terms in the non-linear polynomial
feature space. One of the most popular kernels is the
radial basis function (RBF) non-linear kernel:

—{ju—v 2
. Le=ell

K(U,U) =) (4)

with variance parameter o, giving another non-linear
squash of the dot product of the two examples.
2.1 Standard Formulation of SVM Outputs

The SVM output classification, for any given example
z, can be computed as:

F(z) = sign(G(z) - b), (5)

Zazyl), (6)

where vector of alphas « (of length £) are the variables
determined by the above QP optimization problem.

'Where 2-norm defined as {ju—v||* = (u-u—2u-v+v-v).

Let SV represent the set of positive support vector
examples (for which 0 < a; < C) and SV~ represent
the set of negative SV examples (for which 0 < «a; <
C). Similarly, define their corresponding “in-bounds”
subsets TNt and IN—, for which 0 < a; < C. The
scalar bias (b) is typically chosen as midway between
the mean of G over INT and the mean of G over IN~.

2.2 Kernel Distances

The (Euclidian) distance between examples z; and z;
in the feature space of the kernel is, by definition:

dij = dist(¢(z:), (z;)) = \/(II¢(%) p(z;)|1?)- (7)
This can be computed directly from kernel values:

dij = \/Kii - 2K;; + Kjj. (8)

More generally, for any two kernel points U and V de-
fined from sets of D-dimensional (input space) vectors:

U= Z aip(u;) , V= Z ﬁj‘ﬁ(vj) 9

u; €U v; €V
the kernel distance is defined as:
dyy = dist(U,V) = /||U - V|2 (10)

This distance can be computed from kernel values:

dUV Zaza, (ui,uj) QZal,@]K Ui, Vj) Zﬁzﬂj (vi,v5)

1,5]

(11)

2.3 Distance-Based SVM Outputs

A SVM defines a linear discriminate hyperplane in ker-
nel feature space. Any hyperplane can be defined as
all points equi-distant from two points such that the
hyperplane is orthogonal to the line connecting those
two points. For a SVM, these two points can be de-
fined in terms of the two sets SVt and SV ™.

Let Q = ¢(z) be the point in kernel space to which a
given query example x (implicitly) projects and let the
two points defining the SVM hyperplane be:

P= Y afd(z), N=) ojd@), (12)

z:€ESV+H z;€SV -

where ot are the alphas of the positive SVs and a™
are the alphas of the negative SVs.

It turns out that normalizing sets o™ and a~ such that
their sums are each 1 is very useful in practice. This
ensures that neither P nor N are outside the convex hull
of the examples of their respective classes and helps

keep distance values smaller and within a better range
for numeric stability. 2 Since the sums of the two alpha
sets are constrained to be equal in the QP formulation
(via 21_1 a;y; = 0), this normalization is simply:

i={

— +
=3 at,

i=1

of :=2af/s, a; :==2a] /s, (13)

The SVM classifications F'(z) can be computed via the
following alternative definition of G(z), based on the
difference of squared distances from § to N and to P:

Gla) = 3lox) 5~ <] (14

where s is the above alpha normalization factor,

Z aiajK —Z a,-ajK

zi,z;ESV— zi,x;ESVE

(.’Ei,:l)'j) (miaxj) (15)

is a constant which can be precomputed from the orig-
inal SVM (and before normalizing the alphas), and

g(a:) = déN - dapv. (16)

This distance-based reformulation for computing SVM
outputs allows us to employ new geometric methods to
compute bounds on g(z), from which bounds on G(z)
are directly computed using (14).

The above relation (i.e. (14)) between G(z) and g(z)
is seen by comparing the following restatements of (6):

Z o K(z,z;) — Z o K(z,z;y (A7)

T, €ESV+ z; €SV~

G(zx) =

and of (16) (using (11)):

9(z) = K(z,2)-2 oy K(z,2:)+Y_, o7 of K(z:,5)

r;ESV— z;,x; €SV
(18)
—[K(z,z) — 2Za;"K(x,xi) +Z a;’"ajK(a:i,:cj)].
z; €SV ziw; ESVH
(19)

3. Classification Using P,N

Since the high cost of SVM classification arises due to
large L (i.e. large sets SV~ and SV™T), lower cost can
be achieved by instead using two points P and N which
involve smaller sets but are still relatively close to P
and N respectively in kernel feature space.

%In fact, due to geometric properties of SVMs, this al-
pha normalization makes P and N the closest points between
those two convex hulls (Bennett & Bredensteiner, 2000).

Define approximations of P and N respectively as

P=) fiéz), N=) 67¢(z). (20)

2, €2+ 2 €2~

In this section we assume vectors 87 and 8~ and sets
Z%* and Z~ (containing D-dimensional vectors) defin-
ing P and N are given. In the next section we discuss
search methods to find good ones.

Reduced set methods (Burges, 1996) also employ such
approximations. However, they give estimates

':2 BiK(z Z,Bz 11721

2z, €2+ 2 €7~
(21)

g(z) =

whereas we find bounds: gr.(z) < g(z) < gu(z)

Computing bounds on g(x) directly gives bounds on
the SVM classification output F(z), via (14) and (5),
where Fr(z) < F(z) < Fg(z) :

| P, = sign(Gr(z) —b) , Fu = sign(Gn() —)|
(22)

Gr(z) =5lgr(z) s — €&, Gu(z) =3(gn(z) s — £
(23)

When Fr=Fpy, P and ¥ suffice to classify example z.

3.1 Computing Bounds on g(x) for Given P,N

The following summarizes a very fast two-step method
for computing optimally-tight bounds on g(z) for given
approximations P,N of PN.

3.1.1 STEP 1: EMBED P,N,P,N IN 3D

Given the four kernel points P,N,P,N, we first compute
all six distances between them (using (11)).

We then embed these four points to respective vectors
in three-dimensions:

p=< 0,0,0> n=<ng 0, 0>,
P=< P, Py,0>, N=< Ny, Ny, N, >,

The six coordinates ng, Py, Py, Ny, Ny, Nz are ob-
tained by solving the system of equations defining the
six distances between these four points:

(P, — Ng)? + (P, — N,)? + N2 = dist(P,N)*> (24)
(Ny ~ng)? + N2+ N2 = dist(N,N)® (25)
N+ N2+ N? = dist(N,P)? (26)

(Py — ng)? + P} = dist(P, N)2 (27)

P} + P? = dist(p,P)* (28)

9,=0.0411, g=0.35, gH-O 589 (width=0.548)

gap based [—1 23, 24 03]

. . /\ N
0.3 ~ £ ; T
/‘ *Q : 1
KA { l\ : i
02— TR e
T
| ¢
- e {
01— ’ ‘ : AR
I i ; : :
o l r : B SRITRTE P "
N l [1 dPN= 1ooode-oaoo dNn_O 300 : :
—0.1—" N 'i'QH T dPiEA 1006, dNP=T000, 0901000 i
i 'l dQP=0.354,d0N=0.689 dop=o412don-o755 :
- PR W 0 S :
02— B ,// P=<oosooagzomoo> p—<0000000000000>--~»-.:
g : : N-<0 95500090296,0> 2<1.000,0,000,0.000,0>
-03~—") ke o5
Q=
0.4 -
o o 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 e
x y

Figure 1. Example embedding of P,N,f;, ﬁ, Q.
Note that naive bounds using g; = (dgn — gap)® ~ (dgp +
gap)? and gr = (dan + gap)? — (dap — gap)?, where gap =
dpp + dnn, result in an interval [g;, gn] = [—1.23, 2.03], for
which the sign is unclear. Whereas our interval bound of
[0.0411, 0.589] gives a clear sign.

n2 = dist(P,N)? (29)

Using notational shorthand of dp, = dist(P,P), dnp =
dist(N,P), etc., solutions are:

Ny = dpn, Pz:éiilj;[d%p“d%n'*'dpn]’ Py= d%:’p_P:I?

(30)

- d%,), No=\/d% ~N2-N?
(31)

—~ P2 +2P,N,]| (32)

Np=51— dl,m (&2, + d%,

Ny = =5 [dpy — di, — Bi°

3.1.2 STEP 2: BOUND g¢(z) via OPTIMIZATION

The first step above need only be done once (e.g. be-
fore test-time). To compute bounds on g(z) for each
example z, we now embed all five points (Q = ¢(x),
along with P,N,P, and W) into a 4D space (with coordi-
nates labeled x,y,z,w).

The vectors P, N, p, n retain their first 3 coordinates as
defined in the previous section and have P, = N, =
Pw = Ny = 0. The query point Q embeds into vector
Q=< Qz, @y, Qz,Qy >. A system of four equations
arises from the definitions of distances between Q and
the other four points:

(Qz—No)® +(Qy—Ny)* +(Q.—N.)* +Q2 = dbn (33)

(Qw “Px)2+(Qy_Py)2+Qz+Qi; ng‘?P (34)
Qe —na)?+ Q2+ Q2+ Q% =d3, (35
QL+ +Q2+Q% =dp, (36)

Solving (35), (36), and (30) for Q, yields:

+ dfm]. (37)

Qe = T;;‘;[dQQp - dz n

Unfortunately, unlike the previous 3D case, we cannot
directly solve for the remaining three coordinates, be-
cause dgp and dgn are also unknown. Indeed, they
are the expensive distances we are trying to avoid com-
puting. The radius of the sphere on which Q must lie,
given the triangle imposed by the known distances dg,
and dg, and the anchor points p and n, is given by:

= Q)+ Q3+ @, (38)
Solving (38) and (36) for R yields

R*=d3, - Q2. (39)

With five remaining unknowns (Qy,Q:,Qw,dor.don),
the problem is under-constrained. Q could be any-
where inside or on the circle (of radius R and center
at < Qz,0,0,Q, >) shown in Figure 1, depending on
(0. Due to our choice of embedding, Q. is fixed, and
so the plane of that circle orthogonal to the x-axis.

So, instead, we settle for finding the minimum (gr(z))
and maximum (g (z)) of function g(z), using function
optimization over @}y, Q,, Q to find the extrema of:

g =don = dyp (40)

It turns out that both extrema occur when Q is exactly
on that circle (i.e. Q,, = 0), since @,, factors cancel in
g- This also means (via (38)) that @, determines Q,:

Ql=R*-Q, (41)
Thus, we only need to optimize over Q.
Replacing Q2 with R? — Q2 for (34) and (33) yields:

A= dQP - (Qw_Pm)2+(Qy_Py)2+(R2- i) +(Q2w)
42
B = dQN - (Q:c) (Qy y) +Bk+Q2 ()

By = [sign(Q-)(R* - Q) - N;P (44)
The gradient of g with respect to @, is:

5y _ B o4
50, = 50, 50, (45)

0A

5q. = 2@ —F)-20, =- (46)
0B 8By,
50, = (Qy — Ny) + 5Q, (47)
Reorganizing B; to make g—glyl more obvious gives:

By, = (R - Q}) ~2N.sign(Qz)(R*~ Q%)% + N? (48)

6B 1
Zs?k = —2Qy + 2N, Qysign(Qz)(R* — Q2)"% (49)

v

Combining results for 3£ Q and ‘5‘4 ylelds

09

55 = [2V:Qsion(Q.) (B

—Q%)"% —2N,] +2P,
(50)

Setting this gradient for g to zero and squaring both
sides indicates that extremas occur when:

NIQG(R? - Q)" = (N, — P,)? (51)
Solving (51) for @, gives:
N,—P,)°R?
Q = &/ xriw Ay (52)

and (via (41)):

Q:=+/R -2 (53)

Finally, evaluating g (by plugging @y and @, into the
expression for B— A), for all four combinations of signs
for @y and Q., includes the minimum gy (z) and the
maximum gg(x).

The degenerate case, where both Ny = P, and N, =
hold, means P,N,P N all embed in a 2D plane and the
line connecting P and N is parallel to the (x-axis) line
connecting P and N. For that (rare) fortunate case,
9. (x)=g(z) = gm(z), because there are no extrema
(ie. g is identical for all 0 < @, < R).

This optimization process is very fast, involving no it-
erations and only basic scalar computations and some
square roots. In practice, we have found the time to
compute gr(z) and gy (z) to be roughly that of one
10-dimensional dot product. ® Thus, the overhead in
computing bounds easily pays for any savings in fewer
dot products obtained due to the smaller sets of the P
and N approximations.

®Tests performed on 450 Mhz Sun System Ultra, 60.

3.2 Direct Application: Safe Weight-Folding

In the special case of the linear kernel, outputs can
be computed efficiently via the “weight foldmg” trick.
First, precompute a D-dimensional weight vector w,
such that w; = 377", y;4;X;;. Then compute each
output using G(z) = zw. This requires only a single
dot product, instead of the L required for the general
kernel case.

One motivation behind our new techniques was to
allow general kernels to achieve speedups approach-
ing that of weight folding whenever possible. As
an extreme example, a degree-1 polynomial kernel
K(u,v) = (u-v+ 0.01)! behaves very similar to a
linear kernel, but the standard SVM output formula-
tion still requires L more work per test example in this
case than one would expect is necessary.

Consider approximations P = ¢(wtr) and N = d(w™),
for D-dimensional vectors w* and w™ given by:

+ _ + v, . - _ - ..
wi = E o Xij w; = E a; X5
z;€8V+ T, €SV~

Across a variety of simple randomly—generated prob-
lems we have found that these cheap PN approxima-
tions indeed usually suffice for classifying (i.e. F(z) =
Fy(z)) almost all data using that nearly-linear poly-
nomial degree-1 kernel — including the SVs (which are
close to the discriminate hyperplane).

Unfortunately, performance quickly degrades as non-
linearity increases. For polynomial degree 2 kernels,
only a small percentage of (far from the hyperplane)
examples can typically be classified using this simple
Pand N. As expected, in general we must find better
approximations, which is the focus of the next section.

4. Finding Effective P,

The method of the previous section works for any ap-
proximation of P and N, including the results from any
existing reduced sets methods. Its key contribution
is that any classification it confidently outputs (i.e.
when Fy(z) = Fy(x)) will agree in sign with the orig-
inal SVM. However, to fully harness that method one
must first find good -yet-cheap approximations P and
N, as explained below.

4.1 Optimizing Beta Weights

One way to improve approx1mat1ons Is simply to tune
just the 8+ and B~ values of P and N. Unlike the a*
and o~ of the standard SVM QP formulation, there
are no constraints on these betas. We consider two
ways to define the cost function when optimizing.

4.1.1 CosT BASED ON DISTANCE

One natural cost function to optimize A% is dist(P,?),
computed via (11). As shown in (Schélkopf et al.,
1999), optimal betas for this cost function can be di-
rectly computed using a matrix inversion:

Bt = (K*™! K?z at, (54)

where K* is a matrix with elements K7, = ¢(z;) - ¢(z:)
and K** has KZF = ¢(z) - ¢(z;), for all z; € Z* and
all z; € SV*+. Given N and N, 8~ can be similarly
optimized.

4.1.2 CosT BASED ON BOUNDS-WIDTH

Whereas the above cost treats P and N separately, we
have developed new methods that optimize them to-
gether. This uses cost based on the average width of
the bounds on g(z), over some subsample of data. In
particular, we use a subsample of the SVs which are
closest to the discriminate hyperplane (i.e. select z;
with lowest |G(z;) — b] computed by SVM training).

The intuition is that what we really want are P and N
that work together to maximize the chance that any
given example z will get Fr(z) = Fy(z). For very
close approximations, the distance-based approach will
do this well also. However, for ZT and Z~ sets small
enough to allow massive speedups, the approximation
distances will typically still be quite large.

In fact, for classification signs per se, we really only
care about the minimizing the width of the bounding
intervals that is on the wrong side of zero. So, our cost
averages the costs of each selected training sample z;:

costy(z;) = |G — b fy; = +1 and Gy — b < 0,
costy(z;) = Gg—b ify;=-1and Gg —b> 0,
costy (z;) = 0 otherwise.

Evaluating this cost over samples is efficient because
our g(x) bounding method is so fast. For ease of ex-
perimentation with cost function variates, we currently
use a quasi-Newton method, using finite difference to
compute gradients. However, our analytic solution for
extrema gz, (z) and gg(z) should enable future analytic
solutions for gradients and Hessians.

Preliminary experiments indicate that optimizing with
bounds-width costs may involve more local minima
than for distanced-based costs. So, as a heuristic,
the first seed values we use for betas during multi-
ple (global) optimizations is the best betas according
to distanced-based cost (and possibly small perturba-
tions as well). This provides a useful baseline against
which to evaluate the results from other seeds, and

ensures that we do no worse than the distance-based
approach for any approximation.

4.2 Optimizing Z Vectors

Sets Z+ and Z~ of P and N need not necessarily contain
only training examples (as SVt and SV~ must). As
the reduced set work showed, exploiting this often al-
lows significant additional speedup without additional
approximation errors.

For distanced-based cost, the eigenvectors with highest
eigenvalues resulting from kernel Principal Component
Analysis (PCA) for SV give good Z;* for P (similarly
for W), as discussed in (Scholkopf et al., 1999). We then
fix Z* and Z~ and optimize betas via (54). Further
improvement is possible by then optimizing over both
Z and {3 sets at the same time (as discussed in (Burges,
1996)}, but we have not explored that yet.

We have focussed instead on exploring our cost based
on bounds-width to optimize Zt and Z~ together.
Due to local minima concerns, using a variety of seed
vectors is useful, including all zeros, small random val-
ues, support vectors (of the corresponding class), and
the weight-folded vectors w¥ w™.

4.2.1 GREEDY Z CONSTRUCTION

We have only explored greedy optimization, where one
pair of new vectors (one for Z* and one for Z7) is
optimized at a time (and all previous ones are fixed).
However, all betas are optimized as well during each
iteration of the optimization process.

4.2.2 GREEDY SV SELECTION

A cheaper approach is to only do greedy optimization
over sets of SVs (ie. ZT C SV* and Z— C SV™).
This discrete optimization will usually provide a less
impressive compression ratio (from P and N to P and
N), but has the clear advantage that all kernel evalu-
ations are between SVs and have thus probably been
cached during SVM training. This can speedup the
compilation process by as much as a factor of D. An-
other advantage is that any kernel values computed
during test-time can be reused if the full original SVM
is later required, whereas kernel values using general

Z vectors will be wasted if no approximations succeed
and the full SVM is required.

5. Compiling Sequences of P,N

Any approximation of P and N will yield Fp(z) #
Fr(z) for some x, particularly z close to the SVM
decision hyperplane. So, we produce a succession of

approximations, with decreasing approximation error
but increasing cost to compute distances. During clas-
sification of a test example z, progression along this
sequence is stopped as soon as Fr,(z) = Fg(z) occurs.
This results in proportionality to difficulty: examples
farthest from the decision boundary tend to be classi-
fied earliest in the sequence.

Furthermore, we have found that maintaining the in-
tersection of the sequence of intervals [gz(z), gu(z)]
over all PN sometimes results in even tighter bounds.
This is because sometimes one approximation con-
strains the upper bound better but another (later) one
constrains the lower bound better. Maintaining these
interval intersections is a cheap way to partially ac-
count for the global geometric constraints among ¢(z),
P, N, and the many approximation points.

Taken together, this sequence of approximations pro-
vides a “compiled SVM”, with the final level being the
full original SVM, which is only invoked for z when
earlier approximations fail to achieve Fr(z) = Fy(z).

Currently, our sequences consist of 20 approximations
(Z+,Z~ pairs of sizes 1 through 20, or less if too few
SVs) followed by the full SVM. Later Z sets are su-
persets of the previous ones, due to our greedy con-
struction. In this way, we focus on massive speedups
for easy examples, and resort to the full SVM for the
others. Obviously there are many other types of se-
quences to consider as well.

It is also useful to note that our bounds provide a
cheap anytime approach to classification. Even when
Fr(z) = Fy(z) is not yet true, our computed bounds
[Gr — b,Gyg — b] gives us a solid basis for guessing
the most likely class cheaply (i.e. which ever side of
zero is wider). In fact, we have found that when the
width of one side of zero is larger than four times the
other side, the classification very seldom flips. This
is probably related to why reduced set estimates have
been reported to usually introduce few additional test
errors. Qur bounding methods provide a principled
basis for doing even more aggressive compression than
practical using the reduced set methods, since our ap-
proach prevents approximation errors from leading to
any disagreements with the original SVM.

6. Example

This paper has focussed on developing the bounding
technique of Section 3, but fairly evaluating it requires
more optimal (in terms of both speed and finding
global optimals) versions of the approximation meth-
ods of Section 4. Therefore our empirical work so far
is suggestive but preliminary.

A: Zp=<7.88,~3.49> Zn=<2.47 -8.58>
bp=0.0136 bn=0.0126 w=27.2 {=100/100
4

B: Zp=<5.61,-5.72> Zn=<4.85 ~6.29>
bp=3.28e-05 bn=-0.000244 w=25 f=100/100
4

2

0

-2

-4 -4
-4 -2 0 2 4 24 -2 0 2 4

C: Zp=<-0.157,0.439> Zn=<-0.218 -0.064>

bp=0.644 bn=0.915 w=20.9 f=00/100

D: Z2p=<0.423,0.231> Zn=<-0.272 -0.43>
bp=1.01 bn=0.998 w=1.11 =1/100

-2

-4 -4
-4 -2 0 2 4 -4 -2 0 2 4

Figure 2. Random 2-dimensional data example.
For each subplot, the middle dashed contour line is the
original SVM’s discriminate (i.e. connecting x for which
G(z) — b = 0) and the surrounding ones are its margins
(where G(z) — b = £1, including all z € IN' and IN7).
Boxed points are the SVs. Solid contour lines (if visible)
indicate where Gr(z) — b= 0 or where Gy (x) — b= 0.

For ease of visualization, we illustrate our approach
in Figure 2 using random 2-dimensional data of 50
positive and 50 negative training examples, generated
from two noisy Gaussians centered at < 1,1 > and
< —1,—1 > respectively. For C' = 10 and polynomial
degree 2 kernel, the trained SVM has 3 positive SVs
(2 at C) and 4 negative SVs (1 at C).

All 4 cases (A—D) show the performance of the first ap-
proximation @,ﬁ) in a compiled SVM sequence. Cases
A and B tuned just betas, using distance-based and
width-based costs respectively. Both are too weak to
classify any examples (e.g. failure (f) counts indicate
100) although B’s average bounds width (w) is some-
what smaller. C and D both also tuned the pair of
2-dimensional Z vectors, for distance-based and width-
based cost respectively. C fails to classify for all but
10 while D succeeds on all but 1. Thus, case D will
achieve about a three-fold speedup (7 SVs compressed
to a single pair) for classifying almost any example.

The area between the solid two curves is where the
approximations are insufficient (i.e. Fr{z) # Fu(z)
for z in that region). In the last plot (D), that area is
small, indicating that sufficient bounds can usually be
computed. In A and B, no solid curves are shown be-
cause they are off the plot. For C, only some negative
examples can be classified correctly — those 10 inside
the region in which the lower bound’s solid curve en-
closed on itself. Width (w) drops across A through D,
reflecting the order of bad to best approximations.

7. Conclusions

We have presented initial methods for compiling SVMs
to achieve large amortized classification speedups
while guaranting preservation of classifications and
having cost proportional to the difficulty of each test
example. We exploit the geometry of the SVM kernel
space to compute tight bounds on the SVM output us-
ing a sequence of approximations, until the sign (class)
becomes clear. We are currently preparing tests on
large NASA data sets.

It is important to realize that our results apply to
other SVMs, regardless of training methods and cost
functions used (e.g. linear programming approaches).
It further applies to other structures of same form
(f(z) = sign(3>_ a; K (z,z;) — b)), such as some classi-
fiers based on large mixture models or neural networks.

This work opens up several new directions for future
work. One is to embed these techniques into SVM
training itself, to speedup up the cost of checking
KKT conditions (which dominates for very large prob-
lems). Another is finding cheaper methods for better
approximations P and ¥ — we have barely scratched
the surface so far, especially for our new costs based
on bounds-width. Especially useful would be better
understandings of how the local minima for bounds-
width and distance-based costs differ. Complementary
work for reducing the effective D (whereas this work
reduces the effective L) would seem particularly useful.

Also, our framework might provide a bridge between
SVMs and other methods. For example, one could find
approximations P and N based on neural networks (e.g.
hidden unit weight vectors become Z; vectors), using
them to speed up the test-time performance of SVMs
based on tanh kernels.

Finally, compiling SVMs into sequences is only the be-
ginning. We suspect that other structures, such as
decision trees, would more effectively adapt bounding
computations to different types of test examples.

8. Acknowledgements

This research was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Ad-
ministration.

References

Bennett, K. P., & Bredensteiner, E. J. (2000). Duality
and geometry in SVM classifiers. Proceedings, 17th
Intl. Conf. on Machine Learning.

Burges, C. J. C. (1996). Simplified support vector de-
cision rules. Proceedings, 13th Intl. Conf. on Ma-
chine Learning (pp. 71-77). San Mateo, CA: Mor-
gan Kaufmann.

C. Burges, C., & Schélkopf, B. (1997). Improving
the accuracy and speed of support vector machines.
Neural Information Processing Systems.

DeCoste, D., & Burl, M. (2000). Distortion-invariant
recognition via jittered queries. Computer Vision
and Pattern Recognition (CVPR-2000).

DeCoste, D., & Schélkopf, B. (2001). Training invari-
ance support vector machines. Machine Learning.
To appear.

DeCoste, D., & Wagstaff, K. (2000). Alpha seeding for
support vector machines. International Conference
on Knowledge Discovery and Dato Mining (KDD-
2000).

Guyon, I. (2000). Online SVM application list. (See
http://www.clopinet.com/isabelle/Projects/SVM/
applist.html.).

Joachims, T. (1999). Making large-scale support vec-
tor machine learning practical. In Advances in Ker-
nel Methods: Support Vector Machines (Schoelkopf
et al., 1999).

Keerthi, S., Shevade, S., Bhattacharyya, C., &
Murthy, K. (1999). Improvements to Platt’s SMO
algorithm for SVM classifier design (Technical Re-
port CD-99-14). Dept. of Mechanical and Produc-
tion Engineering, National University of Singapore.

LeCun, Y. (2000). MNIST dataset. Available at
www.research.att.com/ ~yann/ ocr/ mnist/.

Platt, J. (1999). Fast training of support vector ma-
chines using sequential minimal optimization. In Ad-
vances in Kernel Methods: Support Vector Machines
(Schoelkopf et al., 1999).

Schoelkopf, B., Burges, C., & Smola, A. (1999). Ad-
vances in kernel methods: Support vector machines.
Cambridge, MA: MIT Press.

Schélkopf, B., Knirsch, P., Smola, A., & Burges, C.
(1998). Fast approximation of support vector kernel
expansions, and an interpretation of clustering as
approximation in feature spaces. Mustererkennung
1998 — 20. DAGM-Symposium (pp. 124 - 132).
Berlin: Springer.

Scholkopf, B., Mika, S., Burges, C., Knirsch, P.,
Miiller, K.-R., Rétsch, G., & Smola, A. (1999). In-
put space vs. feature space in kernel-based methods.
IEEE Transactions on Neural Networks, 10.

